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Abstract. Prions are misfolded proteins that induce neurodegenerative

diseases in mammals by acting as a template and misfolding other pro-

teins. τ proteins are believed to act in this way with Alzheimer’s Disease.

This paper aims to modelling the spreading of misfolded τ proteins us-

ing the brain connectome — a graph of neural connections in the brain

— starting with the Fisher KPP reaction-diffusion model as a baseline.

Different mechanisms (clearance and damage) are then considered and in-

corporated into the model in order to understand their role and relevance.

This understanding plays a key role for developing future treatments for

this seemingly unstoppable disease.



1 introduction and biological background

Alzheimer’s Disease (AD) is a neurodegenerative disorder characterised by dementia.

It significantly alters memory function and causes functional impairment without

affecting the state of consciousness. According to the Alzheimer’s Disease Interna-

tional, there were more than 55 million people suffering from it in the year 2020, and

its impact is expected to double every 20 years [1].

The prion-like spreading of AD has been under the consideration of the neuro-

scientific community for some decades [2]. Prions are proteins that act as infectious

agents, causing a lethal neurodegeneration throughout mammalian brains. The prion

hypothesis, backed by experimental evidence, provides a framework that explains the

way that proteins become infectious and how they spread and self-replicate. The

infectiousness emerges as a consequence of the misfolding of said proteins. Once

misfolded, they can spread and infect the rest of the brain through self-replication:

healthy proteins can adopt the infectious misfolding from toxic ones [3].

The first speculations regarded the Amyloid β (Aβ) protein as the one causing

the brain damage [4]. However, given that (i) no therapeutical progress has been

made with regard to this hypothesis, and (ii) the levels of misfolded τ proteins have

been noticed to increase during the progress of AD [5], this study will model the

spread of τ proteins. Aβ propagates through the extracellular matrix while τ spreads

within axonal pathways, and transport through the axonal pathways can be accu-

rately represented by the weighted graph modelling neural connections provided by

the Human Connectome Project [6]. This study will use the lowest-resolution con-

nectome, consisting of 83 nodes, to simulate the τ protein spreading throughout the

brain.

Modelling the spread of the misfolded τ proteins is of high interest: tracking how

each cerebral region gets infected can help towards a more profound understanding

of the evolution of Alzheimer’s. Heiko Braak [7] already studied the progression of

AD classifying it into 6 stages, which we will refer to as Braak stages. These can

be associated with certain brain regions, allowing us to classify most nodes into one

of the 6 Braak stages. From Braak’s study we know that misfolded τ proteins are

initially found in the transentorhinal region of the temporal lobe.

We will begin by considering the Fisher-Kolmogorov-Petroski-Piskunov (Fisher-

KPP for short) reaction-diffusion equation [8, 9]. After implementing the model and

analysing the results, we will move onto a model proposed in [10] where τ concen-

tration and the brain clearance are coupled. This is an improvement compared to



the Fisher-KPP model given that the latter does not account for the brain clearance

mechanisms that remove toxic proteins. Experimental evidence suggests that these

clearance mechanisms are deteriorated with the presence of toxic proteins, providing

the motivation behind coupling both processes. However, the exact dependence of

the clearance on the toxic concentration is still being investigated [10–12]. Finally,

we will explore how brain damage can be included in the model to study the impact

it has. Cognitive damage adversely affects the neural connections between nodes,

which can be translated to the Connectome framework by altering the entries of the

weighted graph.

2 fisher-kpp model

2.1 reaction-diffusion equation

The Fisher-KPP equation is a basic nonlinear reaction-diffusion equation. When

applied to our case, as done in [13], the variable to solve for will be p, the concentration

of misfolded τ proteins:

dp

dt
= ∇ · (D · ∇p) + αp (1− p) , (1)

where the first term of the RHS accounts for transport, D being the diffusion tensor,

and the second term models the interactions between healthy and misfolded τ pro-

teins. Notice this second term is a nonlinear logistic term with a carrying capacity of

1 and a rate α. Hence, in this model the concentration p is nondimensionalised in a

way that it belongs to the interval [0, 1].

Using the Connectome, we can model diffusion in the following way. Subtracting

the degree matrix from the weighted adjacency matrix gives the Graph Laplacian,

which captures the connectivity of each node relative to its neighbours: L = D1−W.

The weighted degree matrix D1 is a diagonal matrix whose element (i, i) is defined

as:

(D1)ii =
83∑
j=1

Wij. (2)

Now, the Human Connectome Project provides several ways of defining the weighted

adjacency matrix, all of them already nondimensionalised. The simplest defines the

entry (i, j) as just the number of axons or nerve fibres n connecting nodes i and j:

Wij = nij. The other definitions also depend on the average length between those

nodes lij. The possibilities include Wij = nij/lij and Wij = nij/l
2
ij. We will use the
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last one, where the connectivity between two nodes is significantly penalised if they

are a long distance from each other. The Graph Laplacian is therefore:

L =


∑83

j=1
n1j

l21j
− n11

l211
−n12

l212
· · ·

−n21

l221

∑83
j=1

n2j

l22j
− n22

l222
· · ·

...
...

. . .

 . (3)

Note that nij = nji and lij = lji, as they represent the same physical quantity (number

or length of fibres joining two nodes). Hence, the Graph Laplacian will be symmetric.

The Graph Laplacian, whose values represent the connectivity between neighbour-

ing nodes, can now be used to rewrite Equation (1) as a matrix-vector ODE. Now

the variable to solve for will be a vector of the τ protein concentrations in each node

p⃗ = (p1, p2, . . . , p83)
T :

dp⃗

dt
= −ρ1Lp⃗+ αp⃗⊙

(
1⃗− p⃗

)
, (4)

where ρ is an effective diffusion coefficient and ⊙ is used to represent element-wise, or

Hadamard, multiplication. An ODE for every node i can be inferred from Equation

(4):

dpi
dt

= −ρ
83∑
j=1

Lijpj + αpi (1− pi) . (5)

However, Equation (5) as it is implies a nonphysical diffusion process. Within this

process, we know that the total mass of misfolded τ proteins, M =
∑83

i=1 pivi, should

be conserved, where if pi is adimensional, vi should too. Thus, we can consider the

volumes vi to be normalised by a factor or norm of 1 unit volume, so that they are

now adimensional but keep their values. We will later explain why this is reasonable.

It can be ratified that mass is not being conserved by the diffusion term by calculating

the mass rate using Equation (5) while considering only diffusion and forgetting about

the conversion term as follows:

dM

dt
=

d

dt

83∑
i=1

pivi =
83∑
i=1

dpi
dt

vi = −ρ

83∑
i=1

83∑
j=1

Lijpjvi = −ρ

83∑
j=1

pj

83∑
i=1

Lijvi ̸= 0, (6)

assuming the volumes vi are constant. This calculation confirms that the process of

diffusion has some nonzero mass rate, which is unphysical. However, Equation (3)

implies that
∑83

i=0 Lij = 0 ∀j. Therefore, if the vi in Equation (6) was not present,

we would indeed get a 0 mass rate, making the transport process physical again. In

other words, dividing the transport term by vi ensures mass is conserved. However,

note that if the transport term is divided by the volumes, ρ also scales the volumes.
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Therefore, it is not only a diffusion coefficient, now it also accounts for the volume

normalisation. This is the reason why considering a normalisation by a factor of one

is reasonable: ρ will absorb the actual normalisation factor. Fortunately, the volumes

of each node are available from the Connectome. To account for this then, we reach

the final form for this initial Fisher-KPP model:

dpi
dt

= −ρ

83∑
j=1

Lijpj
vi

+ αpi(1− pi), (7a)

pi(0) = pi,0. (7b)

Note the diffusion term does now yield dM
dt

= 0.

2.2 computational implementation

The subsequent analysis and results come from the model in Equation (7) being

implemented in Python using the Numpy library. It is solved following an explicit

scheme discretising time, and the diffusion through the brain is modelled using the

Connectome’s Graph Laplacian as an array.

We know that misfolded τ proteins start accumulating in the transentorhinal

region [7]. Therefore, only those nodes associated with Braak stage I have a nonzero

initial concentration seeding. The toxic proteins reach the rest of the brain through

diffusion, producing the succession of the following Braak stages.

2.3 transport vs reaction

The values for ρ and α, the coefficients scaling the diffusion and the misfolding rates,

can be chosen by studying the system’s evolution for different relative sizes.

Figure (1) shows the average concentration of all nodes grouped by Braak stages

for two cases: (i) diffusion dominates over the concentration growth due to conversion

in the left graph, i.e., ρ/α ≫ 1, and (ii) growth dominates over diffusion in the right

one, i.e., ρ/α ≪ 1.

We can observe that if diffusion dominates the toxic proteins are able to reach

all brain regions before growing in numbers, resulting in an almost simultaneous

increase of the concentration for all brain regions. Only the nodes associated with

the Braak stage I get infected at a slightly earlier time, which is just the effect of

the initial seeding location. This behaviour contradicts the findings of Heiko Braak

in [7]: we know different regions are saturated by misfolded τ proteins at different
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Figure 1: Average toxic τ concentration for the nodes grouped by Braak stage, for a

growth-dominated regime with α = 0.6 and ρ = 3 (left) and a diffusion-dominated

one with α = 2.1 and ρ = 0.01 (right).

times. Therefore, we know we must have that ρ/α ≪ 1, as in the right graph, where

the Braak stages get activated one by one.

2.4 analysis

A steady state analysis shows that there are only two fixed points for the concentration

of each node pi in Equation (7). The healthy steady state pi = 0 is an unstable

one, only attained if the initial condition is pi,0 = 0 ∀ i. As soon as any node has

some nonzero initial seeding, the concentration of the misfolded proteins will converge

toward the stable, toxic steady state pi = 1 ∀ i.
This is an unrealistic system: it implies that the misfolding of a single protein

inevitably results in a full infection. However, random mutations and misfoldings are

quite frequent in protein production in the brain without such an ominous outcome

as the one predicted by this model. As mentioned earlier, we still have not accounted

for the clearance mechanisms performed by the brain to dispose of general residues.

2.5 insight

Despite the simplicity of this model, it can play out as a good starting point valid for

a wide range of neurodegenerative diseases. In the end, there are a number of them
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considered to also spread in a prion-like manner, including Parkinson’s disease and

amyotrophic lateral sclerosis.

We can also use it to understand the connectivity between different brain regions.

AD is known to start in the transentorhinal region, a poorly connected brain region.

We can calculate the average concentration of all the nodes in the network for different

initial seedings. We should expect that when the initial concentration is seeded on

the transentorhinal region, it will take more time for the overall brain concentration

to increase. In contrast, seeding the initial concentration in certain other regions will

make the concentration increase faster.

Figure 2: Average toxic τ concentration for the whole brain for initial concentration

seeded in the different brain regions, coloured by association of the initial seeding

location with the Braak stages.

We can confirm with Figure (2) that the nodes associated with Braak stage I are

indeed poorly connected to the rest of the brain: when the misfoldings are seeded in

those nodes, the time taken for the concentration to increase is longer than if it was

seeded in any other brain region.

3 coupling concentration with clearance

The way in which the clearance is modelled in this paper follows the model proposed

in [10].
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Including clearance should shift the previous stable, fully-saturated steady state to

a lower concentration value, whereas the unstable, healthy steady state should remain

where it was before. We also expect a transcritical bifurcation for these steady states

as the clearance increases [14]. In other words, for high enough clearance levels the

stability of the fixed points is interchanged, meaning the system will now converge

to the healthy state thanks to the large clearance. A transcritical bifurcation for a

parameter µ and a variable x looks like µx − x2 when µ is close to 0. Therefore, if

the critical value of the clearance is λcrit and its value is λi = λi (t) at node i, the

bifurcation is

(λcrit − λi) pi − αp2i , (8)

where α regulates the population growth [14], as in Equation (1). Describing the

diffusion with the Graph Laplacian as before, the concentration ODE follows from

Equation (8):

dpi
dt

= −ρ
83∑
j=1

Lijpj
vi

+ (λcrit − λi)− αp2i , (9a)

pi(0) = pi,0. (9b)

Given that we expect a decay in the clearance for increased concentration p, and

assuming a global minimum clearance level of λmin and a global kinetic constant β

representing node vulnerability, the full model in [10] is:

dpi
dt

= −ρ
83∑
j=1

Lijpj
vi

+ (λcrit − λi)− αp2i , (10a)

dλi

dt
= −βpi (λi − λmin) , (10b)

pi(0) = pi,0, λi(0) = λi,0. (10c)

3.1 computational implementation

Equations (10) can also be implemented using an explicit scheme. For simplicity, we

will assume a homogeneous initial clearance: λi,0 = λ0 ∀ i. However, with knowledge

about the clearance levels for different brain regions, heterogeneous initial clearance

levels can be set to achieve an increased accuracy. Initial concentration seeding will

be set as before at those nodes associated with the first Braak stage.

Parameter values are displayed in Table (1) and are set to those used in [10]:
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Table 1: Parameters for coupled model

Parameter Value (yr−1)

ρ 0.01

α 2.1

λcrit 0.72

λmin 0.01

β 1

3.2 analysis

In this subsection, all parameters, including the initial concentration will be equal for

all nodes. In this case, the system is equivalent to that of a single node. We will study

the phase plane of only one node recalling that we are in a growth-dominated regime

where diffusion has a lower relevance. We can formally ratify this approximation by

considering ρ as a perturbation (due to its small value) and expanding [10]:

pi(t) = pi,1 + ρpi,2 +O(ρ2), (11a)

λi(t) = λi,1 + ρλi,2 +O(ρ2). (11b)

These expansions can be substituted into Equation 10. The result, to leading-order,

is:

dpi,1
dt

= (λcrit − λi,1)pi,1 − αp2i,1, (12a)

dλi,1

dt
= −βpi,1(λi,1 − λmin). (12b)

This confirms that a single-node analysis disregarding the diffusion is not an unrea-

sonable choice given the size of ρ.

3.2.1 bifurcation curve

As said earlier, for high enough clearance levels we expect the stability of the steady

states to change, making the system converge to the healthy state. Hence, there is

a curve in the concentration-clearance phase space separating the initial conditions

where a healthy state is reached from those that converge to the unhealthy state.

Also, we expect the concentration of the unhealthy steady state to have been lowered

from its previous value of 1 due to the newly added clearance.
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Figure 3: τ concentration vs clearance stream plot.

Trajectories on the phase space are shown in Figure (3). Indeed, the separating

curve for the bifurcation can be deduced, together with the reduction in the concen-

tration of the unhealthy steady state, which now seems to be near 0.3.

It is crucial to understand the conditions of the bifurcation curve and find it, given

that it makes the difference between the system getting infected or not. With that

motivation we can parametrise the curve pcrit(λ) as that trajectory which, with initial

conditions p0 = pcrit(λ0) and λ0, intersects the horizontal axis at p(λcrit) = 0. We

can remove the time dependence from the equations by dividing Equation (12a) by

Equation (12b):

∂p

∂λ
= −λcrit − λ− αp

β (λ− λmin)
=

α

β

p

λ− λmin

− λcrit − λ

β(λ− λmin)
. (13)

Rearranging and multiplying by (λ− λmin)
−α/β:

(λ− λmin)
−α/β ∂p

∂λ
− α

β
(λ− λmin)

−α/β−1p =
λ− λcrit

β(λ− λmin)α/β+1
. (14)

Notice it can be expressed as an exact ODE:

∂

∂λ

[
p

(λ− λmin)α/β

]
=

λ− λcrit

β(λ− λmin)α/β+1
. (15)

Integrating Equation (15) from (p0, λ0) to (0, λcrit) by parts and then solving for p0

gives:

p0 =
α(λcrit − λ0) + β(λmin − λcrit) + β(λ0 − λmin)

α/β(λcrit − λmin)
1−α/β

α(α− β)
. (16)

Equation (16) shows the initial concentration at which the bifurcation occurs for

every λ0. This result can be tested by numerically solving the equations for different

9



initial conditions. We will choose λ0 = 1, with a corresponding p0 ≈ 0.056, and also

plot the trajectories of p0 ± 0.01.

Figure 4: τ concentration vs clearance phase plane trajectories.

Figure (4) shows that, as expected, any state with initial conditions (λ0, p0)

converges to the unhealthy steady state ∀ p0 > pcrit(λ0) and to the healthy state

∀ p0 < pcrit(λ0).

3.2.2 reduced concentration for the unhealthy steady

state

As noted earlier and as confirmed by Figures (3) and (4), the unhealthy steady state

has a concentration lower than one. Now, finding out how much it has decreased can

also provide insight into the system dynamics with the coupled clearance. Setting

Equations (12a) and (12b) equal to 0, we find that (λ, p) = (λmin,
λcrit−λmin

α
) are its

coordinates in the phase plane, so a concentration of around 0.338, almost three times

lower than without clearance.

3.2.3 network connectivity

Even though diffusion is small, we can quantify how it affects the evolution of the

clearance level. For this, we will model an unweighted star network with one central

node and N peripheral nodes, where the only connections are from the central node to

the rest. For it to be unweighted, we make the adjacency matrix entries be 1 for those
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nodes that do have a connection, which yields a different Graph Laplacian through

an analogous procedure as the one done before.

Now, the final clearance reached by the system for every initial seeding value in

the central node can be plotted as a continuous line. Furthermore, we can plot several

of these lines for networks with a different number N of peripheral nodes.

Figure 5: Final clearance vs initial seeding for different numbers of peripheral nodes

in an unweighted star network, with λ0 = 2 and the rest of parameters as in Table

(1).

The results are displayed in Figure (5). Notice how a bigger number of nodes

means a larger final clearance attained for the same initial seeding. In other words,

diffusion helps redistributing the misfolded τ concentration so that it is easier for the

clearance mechanisms to remove it.

All in all, implementing clearance as a first order law has reduced the saturation

concentration by almost three times compared to the Fisher-KPP model without

clearance. Hence, we can conclude that this model is a much more realistic one that

aligns better with the way AD spreads. It allows for small concentrations of misfolded

τ proteins to be fully removed, which is a basic mechanism for survival that was not

present in the previous model.

11



4 damage

As an extension, we can try to also account for the damage in the neural connections as

the disease progresses. We parametrise damage as an independent variable q ∈ [0, 1]

which evolves according to its own ODE. When damage is 1 in two connected nodes,

we expect their connectivity to drop to 0. The extended system we propose is:

dpi
dt

= −ρ

83∑
j=1

L̃ij(qi, qj)pj
vi

+ (λcrit − λi)− αp2i , (17a)

dλi

dt
= −βpi (λi − λmin) , (17b)

dqi
dt

= βpi(1− qi), (17c)

pi(0) = pi,0, λi(0) = λi,0, qi(0) = 0, (17d)

where now the entries in the Graph Laplacian decay with the damage of the two

nodes it connects. This will have the effect of reducing, if not completely eliminating

diffusion as τ concentration increases.

We propose a linear and an exponential dependence of the Graph Laplacian on

damage:

L̃ij(qi, qj) = Lij ·
2− qi − qj

2
, (18a)

L̃ij(qi, qj) = Lij ·max

{
e2κ−qi−qj

e2κ − 1
, 0

}
, (18b)

where κ ∈ (0, 1) should be chosen to adjust the connectivity deterioration due to

damage.

The evolution of the Laplacian can be visualised using heatmaps, as in Figures (6)

and (7). We see that over a period of 60 years, the linear decrease of the connectivity

with damage completely destroys all neural connections between nodes, while the

exponential does not lead them to 0. However, after 30 years the exponential has

inflicted more damage than the linear. This makes the model even more realistic and

creates new steady states with lower τ concentration for the later Braak stages, as

shown in Figure (8).

This result, one the one hand, helps preventing a higher concentration load from

reaching certain areas of the brain. However, it does so at the cost of deteriorating

the neural connections, and therefore impeding the spread of the misfolded proteins.
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Figure 6: Laplacian heatmap with linear dependence on damage for different points

in time: t = 0 (left), t = 30 (centre), t = 60 (right).

Figure 7: Laplacian heatmap with exponential dependence on damage for different

points in time: t = 0 (left), t = 30 (centre), t = 60 (right). Here, κ = 0.9.

We can now compare all the different models developed on this study with the

parameters shown in Table (1) together with κ = 0.9. Initial conditions will be

λ0 = 0.1 and q0 = 0 for all nodes, and p0 = 0.2 for those nodes belonging to the

transentorhinal region as before.

Looking at the concentration curves for the new damage model in Figure (8) we

can see that both linear and exponential connectivity damage delay the progression

of Alzheimer’s by a small amount. Moreover, with a closer look we see that the

exponential damage not only delays the infection, but also decreases the steady state

concentration of the Braak stages IV, V, VI, and the unlabelled nodes.
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Figure 8: Toxic τ concentration vs time for all the models studied.

5 Conclusion

This case study has given a huge perspective in understanding the progression of

Alzheimer’s Disease by using the prion hypothesis applied to τ proteins. Through

meticulous simulations using the Fisher-KPP model, and subsequent models incor-

porating brain clearance and damage mechanisms, the study provides crucial insights

into the mechanisms of neurodegeneration in AD.

Initially, the Fisher-KPP model offered a basic framework for tracking the diffusion

and interaction of misfolded τ proteins within the brain’s connectome. The model’s

ability to predict the spread of toxicity through neural pathways highlights its utility

in mapping progression of different prion-like diseases. However, modifying this model

to include brain clearance mechanisms significantly improved our understanding by

depicting how neurodegenerative processes might be mitigated or exacerbated by the

brain’s responses to accumulating proteins.

Subsequently, the inclusion of brain damage in the model allowed for a more

comprehensive understanding of the disease’s progression and its impact on neural

connectivity. The analysis revealed that damage not only restricts the spread of

misfolded proteins but also alters the overall connectivity within the brain, suggesting

that the deterioration of neural pathways does indeed have a significant effect on the

evolution of the disease.
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The mathematical models explored in this study, particularly those integrating

clearance and damage mechanisms, highlight the complex interplay between biological

processes at the molecular level. These models suggest potential therapeutic targets

aimed at improving clearance mechanisms or protecting neural connectivity, which

could pave the way for interventions that delay or mitigate the progression of AD.

This study not only reinforces the importance of mathematical models in biomed-

ical research but also provides a baseline for future studies to explore other neu-

rodegenerative diseases using similar methodologies. As our understanding of the

underlying biological processes improves, so too will our ability to intervene and alter

the course of neurodegenerative diseases. The refinement of these models, informed

by emerging clinical insights, promises to unlock new possibilities in the prevention

and treatment of neurodegenerative disorders, potentially leading to breakthroughs

in how these illnesses are managed in clinical settings.
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