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Abstract. Prions are misfolded proteins that induce neurodegenerative
diseases in mammals by acting as a template and misfolding other pro-
teins. 7 proteins are believed to act in this way with Alzheimer’s Disease.
This paper aims to modelling the spreading of misfolded 7 proteins us-
ing the brain connectome — a graph of neural connections in the brain
— starting with the Fisher KPP reaction-diffusion model as a baseline.
Different mechanisms (clearance and damage) are then considered and in-
corporated into the model in order to understand their role and relevance.
This understanding plays a key role for developing future treatments for

this seemingly unstoppable disease.




1 INTRODUCTION AND BIOLOGICAL BACKGROUND

Alzheimer’s Disease (AD) is a neurodegenerative disorder characterised by dementia.
It significantly alters memory function and causes functional impairment without
affecting the state of consciousness. According to the Alzheimer’s Disease Interna-
tional, there were more than 55 million people suffering from it in the year 2020, and
its impact is expected to double every 20 years [1].

The prion-like spreading of AD has been under the consideration of the neuro-
scientific community for some decades [2]. Prions are proteins that act as infectious
agents, causing a lethal neurodegeneration throughout mammalian brains. The prion
hypothesis, backed by experimental evidence, provides a framework that explains the
way that proteins become infectious and how they spread and self-replicate. The
infectiousness emerges as a consequence of the misfolding of said proteins. Once
misfolded, they can spread and infect the rest of the brain through self-replication:
healthy proteins can adopt the infectious misfolding from toxic ones [3].

The first speculations regarded the Amyloid 5 (AS) protein as the one causing
the brain damage [4]. However, given that (i) no therapeutical progress has been
made with regard to this hypothesis, and (ii) the levels of misfolded 7 proteins have
been noticed to increase during the progress of AD [5], this study will model the
spread of 7 proteins. A propagates through the extracellular matrix while 7 spreads
within axonal pathways, and transport through the axonal pathways can be accu-
rately represented by the weighted graph modelling neural connections provided by
the Human Connectome Project [6]. This study will use the lowest-resolution con-
nectome, consisting of 83 nodes, to simulate the 7 protein spreading throughout the
brain.

Modelling the spread of the misfolded 7 proteins is of high interest: tracking how
each cerebral region gets infected can help towards a more profound understanding
of the evolution of Alzheimer’s. Heiko Braak [7] already studied the progression of
AD classifying it into 6 stages, which we will refer to as Braak stages. These can
be associated with certain brain regions, allowing us to classify most nodes into one
of the 6 Braak stages. From Braak’s study we know that misfolded 7 proteins are
initially found in the transentorhinal region of the temporal lobe.

We will begin by considering the Fisher-Kolmogorov-Petroski-Piskunov (Fisher-
KPP for short) reaction-diffusion equation [8, [9]. After implementing the model and
analysing the results, we will move onto a model proposed in [10] where 7 concen-

tration and the brain clearance are coupled. This is an improvement compared to



the Fisher-KPP model given that the latter does not account for the brain clearance
mechanisms that remove toxic proteins. Experimental evidence suggests that these
clearance mechanisms are deteriorated with the presence of toxic proteins, providing
the motivation behind coupling both processes. However, the exact dependence of
the clearance on the toxic concentration is still being investigated [10H12|. Finally,
we will explore how brain damage can be included in the model to study the impact
it has. Cognitive damage adversely affects the neural connections between nodes,
which can be translated to the Connectome framework by altering the entries of the

weighted graph.

2 FISHER-KPP MODEL

2.1 REACTION-DIFFUSION EQUATION

The Fisher-KPP equation is a basic nonlinear reaction-diffusion equation. When
applied to our case, as done in [13], the variable to solve for will be p, the concentration
of misfolded 7 proteins:

D VD V) tap(1t-p), ()
where the first term of the RHS accounts for transport, D being the diffusion tensor,
and the second term models the interactions between healthy and misfolded 7 pro-
teins. Notice this second term is a nonlinear logistic term with a carrying capacity of
1 and a rate a. Hence, in this model the concentration p is nondimensionalised in a
way that it belongs to the interval [0, 1].

Using the Connectome, we can model diffusion in the following way. Subtracting
the degree matrix from the weighted adjacency matrix gives the Graph Laplacian,
which captures the connectivity of each node relative to its neighbours: L = D; —W.
The weighted degree matrix Dy is a diagonal matrix whose element (i,%) is defined

(D1)ii = Z Wij. (2)

Now, the Human Connectome Project provides several ways of defining the weighted
adjacency matrix, all of them already nondimensionalised. The simplest defines the
entry (4,7) as just the number of axons or nerve fibres n connecting nodes i and j:
W,; = n;;. The other definitions also depend on the average length between those
nodes /;;. The possibilities include W;; = n;;/l;; and W,; = n;;/ lfj We will use the
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last one, where the connectivity between two nodes is significantly penalised if they

are a long distance from each other. The Graph Laplacian is therefore:
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Note that n;; = nj; and l;; = [;;, as they represent the same physical quantity (number
or length of fibres joining two nodes). Hence, the Graph Laplacian will be symmetric.

The Graph Laplacian, whose values represent the connectivity between neighbour-
ing nodes, can now be used to rewrite Equation (1) as a matrix-vector ODE. Now

the variable to solve for will be a vector of the 7 protein concentrations in each node

—

T
D= (p17p27"'7p83) :
dp’ . . -
Ez—pleJrap@(l—p), (4)

where p is an effective diffusion coefficient and © is used to represent element-wise, or

Hadamard, multiplication. An ODE for every node i can be inferred from Equation

#):

83
=—p> Lipj+ap;(1—p;). (5)

j=1

dp;
dt

However, Equation as it is implies a nonphysical diffusion process. Within this
process, we know that the total mass of misfolded 7 proteins, M = Zfil p;v;, should
be conserved, where if p; is adimensional, v; should too. Thus, we can consider the
volumes v; to be normalised by a factor or norm of 1 unit volume, so that they are
now adimensional but keep their values. We will later explain why this is reasonable.
It can be ratified that mass is not being conserved by the diffusion term by calculating
the mass rate using Equation (b)) while considering only diffusion and forgetting about

the conversion term as follows:

AV 4 %, 83 83 83 83
TR pri = d—;Uz’ = —PZ ZLijiji = —Pzpj ZLijUi #0, (6)
i=1 i=1 i=1 j—=1 =1 =1

assuming the volumes v; are constant. This calculation confirms that the process of
diffusion has some nonzero mass rate, which is unphysical. However, Equation (3|
implies that Z?io L;; = 0Vj. Therefore, if the v; in Equation @ was not present,
we would indeed get a 0 mass rate, making the transport process physical again. In
other words, dividing the transport term by v; ensures mass is conserved. However,

note that if the transport term is divided by the volumes, p also scales the volumes.



Therefore, it is not only a diffusion coefficient, now it also accounts for the volume
normalisation. This is the reason why considering a normalisation by a factor of one
is reasonable: p will absorb the actual normalisation factor. Fortunately, the volumes
of each node are available from the Connectome. To account for this then, we reach
the final form for this initial Fisher-KPP model:

dp; 3 Liips
i LijPj (1 —p
i p]; o + api(1 — pi), (7a)
pi(0) = pio- (7b)

Note the diffusion term does now yield % =0.

2.2 COMPUTATIONAL IMPLEMENTATION

The subsequent analysis and results come from the model in Equation being
implemented in Python using the Numpy library. It is solved following an explicit
scheme discretising time, and the diffusion through the brain is modelled using the
Connectome’s Graph Laplacian as an array.

We know that misfolded 7 proteins start accumulating in the transentorhinal
region [7]. Therefore, only those nodes associated with Braak stage I have a nonzero
initial concentration seeding. The toxic proteins reach the rest of the brain through

diffusion, producing the succession of the following Braak stages.

2.3 TRANSPORT VS REACTION

The values for p and «, the coefficients scaling the diffusion and the misfolding rates,
can be chosen by studying the system’s evolution for different relative sizes.

Figure shows the average concentration of all nodes grouped by Braak stages
for two cases: (i) diffusion dominates over the concentration growth due to conversion
in the left graph, i.e., p/a > 1, and (ii) growth dominates over diffusion in the right
one, i.e., p/a < 1.

We can observe that if diffusion dominates the toxic proteins are able to reach
all brain regions before growing in numbers, resulting in an almost simultaneous
increase of the concentration for all brain regions. Only the nodes associated with
the Braak stage I get infected at a slightly earlier time, which is just the effect of
the initial seeding location. This behaviour contradicts the findings of Heiko Braak

in [7]: we know different regions are saturated by misfolded 7 proteins at different
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Figure 1: Average toxic 7 concentration for the nodes grouped by Braak stage, for a
growth-dominated regime with o« = 0.6 and p = 3 (left) and a diffusion-dominated
one with a = 2.1 and p = 0.01 (right).

times. Therefore, we know we must have that p/a < 1, as in the right graph, where

the Braak stages get activated one by one.

2.4 ANALYSIS

A steady state analysis shows that there are only two fixed points for the concentration
of each node p; in Equation @ The healthy steady state p; = 0 is an unstable
one, only attained if the initial condition is p;o = 0 Vi. As soon as any node has
some nonzero initial seeding, the concentration of the misfolded proteins will converge
toward the stable, toxic steady state p; = 1 V1.

This is an unrealistic system: it implies that the misfolding of a single protein
inevitably results in a full infection. However, random mutations and misfoldings are
quite frequent in protein production in the brain without such an ominous outcome
as the one predicted by this model. As mentioned earlier, we still have not accounted

for the clearance mechanisms performed by the brain to dispose of general residues.

2.5 INSIGHT

Despite the simplicity of this model, it can play out as a good starting point valid for

a wide range of neurodegenerative diseases. In the end, there are a number of them



considered to also spread in a prion-like manner, including Parkinson’s disease and
amyotrophic lateral sclerosis.

We can also use it to understand the connectivity between different brain regions.
AD is known to start in the transentorhinal region, a poorly connected brain region.
We can calculate the average concentration of all the nodes in the network for different
initial seedings. We should expect that when the initial concentration is seeded on
the transentorhinal region, it will take more time for the overall brain concentration
to increase. In contrast, seeding the initial concentration in certain other regions will

make the concentration increase faster.

7 concentration vs time for seedings in different brain regions
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Figure 2: Average toxic 7 concentration for the whole brain for initial concentration

seeded in the different brain regions, coloured by association of the initial seeding

location with the Braak stages.

We can confirm with Figure that the nodes associated with Braak stage I are
indeed poorly connected to the rest of the brain: when the misfoldings are seeded in
those nodes, the time taken for the concentration to increase is longer than if it was

seeded in any other brain region.

3 COUPLING CONCENTRATION WITH CLEARANCE

The way in which the clearance is modelled in this paper follows the model proposed

in [10].



Including clearance should shift the previous stable, fully-saturated steady state to
a lower concentration value, whereas the unstable, healthy steady state should remain
where it was before. We also expect a transcritical bifurcation for these steady states
as the clearance increases [14]. In other words, for high enough clearance levels the
stability of the fixed points is interchanged, meaning the system will now converge
to the healthy state thanks to the large clearance. A transcritical bifurcation for a
parameter p and a variable z looks like puz — x? when p is close to 0. Therefore, if
the critical value of the clearance is A, and its value is \; = \; (t) at node 4, the

bifurcation is
(Acrit - )\z)pz - Oép?7 (8)

where « regulates the population growth [14], as in Equation (|l)). Describing the

diffusion with the Graph Laplacian as before, the concentration ODE follows from

Equation :

dp; 3 Liipi
v j : 1] o AN 2
dt - P = ; + (>\cmt )\z) O‘p;v (9&)
pi(0) = pio. (9b)

Given that we expect a decay in the clearance for increased concentration p, and
assuming a global minimum clearance level of \,,;, and a global kinetic constant (8

representing node vulnerability, the full model in [10] is:

dp; & Liip;
v 1)) o AN 2
dt = —p ]Zl i + <)\cmt )\z) ap;, (10&)
dA;
L= —Bpi (N — Amin) » 10b
" Bpi ( ) (10b)
pi(0) = pio, Ai(0) = Aip. (10c¢)

3.1 COMPUTATIONAL IMPLEMENTATION

Equations can also be implemented using an explicit scheme. For simplicity, we
will assume a homogeneous initial clearance: \; o = g Vi. However, with knowledge
about the clearance levels for different brain regions, heterogeneous initial clearance
levels can be set to achieve an increased accuracy. Initial concentration seeding will
be set as before at those nodes associated with the first Braak stage.

Parameter values are displayed in Table (1)) and are set to those used in [10]:
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Table 1: Parameters for coupled model

Parameter | Value (yr—1!)
p 0.01
o 2.1
Aerit 0.72
Amin 0.01
3 |

3.2 ANALYSIS

In this subsection, all parameters, including the initial concentration will be equal for
all nodes. In this case, the system is equivalent to that of a single node. We will study
the phase plane of only one node recalling that we are in a growth-dominated regime
where diffusion has a lower relevance. We can formally ratify this approximation by

considering p as a perturbation (due to its small value) and expanding [10]:

pi(t) = pix + ppiz + O(p%), (11a)
/\z(t) = )\z’,l + p/\i’g + (9(,02) (11b)

These expansions can be substituted into Equation [10} The result, to leading-order,

1s:

dp;

gt’l = (Aerit — ANi,1)Pig — Oépil, (12a)
d\;

dt71 = —0pi1(Ai1 — Amin)- (12b)

This confirms that a single-node analysis disregarding the diffusion is not an unrea-

sonable choice given the size of p.

3.2.1 BIFURCATION CURVE

As said earlier, for high enough clearance levels we expect the stability of the steady
states to change, making the system converge to the healthy state. Hence, there is
a curve in the concentration-clearance phase space separating the initial conditions
where a healthy state is reached from those that converge to the unhealthy state.
Also, we expect the concentration of the unhealthy steady state to have been lowered

from its previous value of 1 due to the newly added clearance.



Con(entlatlon clearance phase spa(e streamlines

=
[o’s}
L

=
[=}
L

=]
N
\

T concentration p

=
o

0.0

ofo 05 A vt 1.0 >0
Clearance A

Figure 3: 7 concentration vs clearance stream plot.

Trajectories on the phase space are shown in Figure . Indeed, the separating
curve for the bifurcation can be deduced, together with the reduction in the concen-
tration of the unhealthy steady state, which now seems to be near 0.3.

It is crucial to understand the conditions of the bifurcation curve and find it, given
that it makes the difference between the system getting infected or not. With that
motivation we can parametrise the curve p..;(A) as that trajectory which, with initial
conditions py = perit( o) and Ao, intersects the horizontal axis at p(Ag) = 0. We
can remove the time dependence from the equations by dividing Equation by
Equation (|12b)):

8]) )\crit —A - Oép a b )\crit —A
—_— = = — — . (13)
Rearranging and multiplying by (A — )\mm)_a/ B
8p « e A = Aerit
A= Anin) "= = — (N = Apin) P p = = 14
Notice it can be expressed as an exact ODE:
A— >\cri
9 P - — (15)
a>\ (>\ - )\min)a/ﬁ 5()\ - /\Trzz'rL)Cy/'B—~_1
Integrating Equation from (po, Ao) to (0, Aerir) by parts and then solving for pg
gives:
- - . _ /B N\ \-a/B
Do = a()\cmt >\0) + ﬁ()\mzn )\cmt) + /8()\0 Amzn) ()\cmt )\mzn) . (16)

a(a—f)
Equation shows the initial concentration at which the bifurcation occurs for

every Ag. This result can be tested by numerically solving the equations for different
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initial conditions. We will choose \g = 1, with a corresponding py ~ 0.056, and also

plot the trajectories of pg 4= 0.01.

Trajectories in the phase space
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Figure 4: 7 concentration vs clearance phase plane trajectories.

Figure shows that, as expected, any state with initial conditions (Ao, po)
converges to the unhealthy steady state Vpy > perit(Ao) and to the healthy state

Vpo < pcrit<>\0)-

3.2.2 REDUCED CONCENTRATION FOR THE UNHEALTHY STEADY

STATE

As noted earlier and as confirmed by Figures and , the unhealthy steady state
has a concentration lower than one. Now, finding out how much it has decreased can
also provide insight into the system dynamics with the coupled clearance. Setting
Equations and equal to 0, we find that (A, p) = (Anin, %) are its
coordinates in the phase plane, so a concentration of around 0.338, almost three times

lower than without clearance.

3.2.3 NETWORK CONNECTIVITY

Even though diffusion is small, we can quantify how it affects the evolution of the
clearance level. For this, we will model an unweighted star network with one central
node and N peripheral nodes, where the only connections are from the central node to

the rest. For it to be unweighted, we make the adjacency matrix entries be 1 for those
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nodes that do have a connection, which yields a different Graph Laplacian through
an analogous procedure as the one done before.

Now, the final clearance reached by the system for every initial seeding value in
the central node can be plotted as a continuous line. Furthermore, we can plot several

of these lines for networks with a different number N of peripheral nodes.

2.0 =t
—— N=20
1.8 —— N=30
= —— N=40
5‘5;16 — N=1530
g N =60
EN
i 1.4
1.2
0.0 0.2 0.4 0.6 0.8 1.0

Initial seeding pg

Figure 5: Final clearance vs initial seeding for different numbers of peripheral nodes

in an unweighted star network, with Ao = 2 and the rest of parameters as in Table

[k

The results are displayed in Figure . Notice how a bigger number of nodes
means a larger final clearance attained for the same initial seeding. In other words,
diffusion helps redistributing the misfolded 7 concentration so that it is easier for the
clearance mechanisms to remove it.

All in all, implementing clearance as a first order law has reduced the saturation
concentration by almost three times compared to the Fisher-KPP model without
clearance. Hence, we can conclude that this model is a much more realistic one that
aligns better with the way AD spreads. It allows for small concentrations of misfolded
T proteins to be fully removed, which is a basic mechanism for survival that was not

present in the previous model.
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4 DAMAGE

As an extension, we can try to also account for the damage in the neural connections as
the disease progresses. We parametrise damage as an independent variable ¢ € [0, 1]
which evolves according to its own ODE. When damage is 1 in two connected nodes,

we expect their connectivity to drop to 0. The extended system we propose is:

dpi Qza QJ p] 2
dt Zl v + (Aerit = Ai) — apy, (17a)
A,

L = —Bp;i (N — Amin) 17b
% Bpi ( ) (17b)
dg;

q = Bpi(1 — @), (17¢)

pi(O) = Di,0; Xi(0) = i, ¢;(0) =0, (17d)

where now the entries in the Graph Laplacian decay with the damage of the two
nodes it connects. This will have the effect of reducing, if not completely eliminating
diffusion as 7 concentration increases.

We propose a linear and an exponential dependence of the Graph Laplacian on

damage:
7 _ 2—-4¢—yq
Lij(qi, q5) = Lij - 9 (18a)
~ 62K qi—4;
Lij(ai, q5) = Lij - max {m,o}; (18b)

where x € (0,1) should be chosen to adjust the connectivity deterioration due to
damage.

The evolution of the Laplacian can be visualised using heatmaps, as in Figures @
and . We see that over a period of 60 years, the linear decrease of the connectivity
with damage completely destroys all neural connections between nodes, while the
exponential does not lead them to 0. However, after 30 years the exponential has
inflicted more damage than the linear. This makes the model even more realistic and
creates new steady states with lower 7 concentration for the later Braak stages, as
shown in Figure (§].

This result, one the one hand, helps preventing a higher concentration load from
reaching certain areas of the brain. However, it does so at the cost of deteriorating

the neural connections, and therefore impeding the spread of the misfolded proteins.
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We can now compare all the different models developed on this study with the
parameters shown in Table together with x = 0.9. Initial conditions will be
Ao = 0.1 and go = 0 for all nodes, and p, = 0.2 for those nodes belonging to the
transentorhinal region as before.

Looking at the concentration curves for the new damage model in Figure (8) we
can see that both linear and exponential connectivity damage delay the progression
of Alzheimer’s by a small amount. Moreover, with a closer look we see that the
exponential damage not only delays the infection, but also decreases the steady state
concentration of the Braak stages IV, V, VI, and the unlabelled nodes.
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Figure 8: Toxic 7 concentration vs time for all the models studied.

5 (CONCLUSION

This case study has given a huge perspective in understanding the progression of
Alzheimer’s Disease by using the prion hypothesis applied to 7 proteins. Through
meticulous simulations using the Fisher-KPP model, and subsequent models incor-
porating brain clearance and damage mechanisms, the study provides crucial insights
into the mechanisms of neurodegeneration in AD.

Initially, the Fisher-KPP model offered a basic framework for tracking the diffusion
and interaction of misfolded 7 proteins within the brain’s connectome. The model’s
ability to predict the spread of toxicity through neural pathways highlights its utility
in mapping progression of different prion-like diseases. However, modifying this model
to include brain clearance mechanisms significantly improved our understanding by
depicting how neurodegenerative processes might be mitigated or exacerbated by the
brain’s responses to accumulating proteins.

Subsequently, the inclusion of brain damage in the model allowed for a more
comprehensive understanding of the disease’s progression and its impact on neural
connectivity. The analysis revealed that damage not only restricts the spread of
misfolded proteins but also alters the overall connectivity within the brain, suggesting
that the deterioration of neural pathways does indeed have a significant effect on the

evolution of the disease.
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The mathematical models explored in this study, particularly those integrating
clearance and damage mechanisms, highlight the complex interplay between biological
processes at the molecular level. These models suggest potential therapeutic targets
aimed at improving clearance mechanisms or protecting neural connectivity, which
could pave the way for interventions that delay or mitigate the progression of AD.

This study not only reinforces the importance of mathematical models in biomed-
ical research but also provides a baseline for future studies to explore other neu-
rodegenerative diseases using similar methodologies. As our understanding of the
underlying biological processes improves, so too will our ability to intervene and alter
the course of neurodegenerative diseases. The refinement of these models, informed
by emerging clinical insights, promises to unlock new possibilities in the prevention
and treatment of neurodegenerative disorders, potentially leading to breakthroughs

in how these illnesses are managed in clinical settings.
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