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1 Introduction

Throughout the twentieth century electrical communication systems were being developed, which led to the
creation of microwave communication systems, operating at bit rates (a measure of the speed with which
information is being sent) of around 100 MB/s. It was later realised that the bit rate could be increased by
some orders of magnitude if an optical wave (higher frequency) was used as carrier instead. The invention of
LASER technology in 1960 allowed the idea of light confinement, suggesting optical fibers as a good choice
for guiding light. By 2001, a bit rate of 10 Tb/s was achieved [Agrawal, 2010, p.2-16].

Optical fibers are nothing but dielectric waveguides. In other words, they are structures that have
the purpose of guiding the waves’ energy transmission, whether EM or sound waves. They are designed
to minimise the loss of energy: without waveguides, the energy of these waves decreases with the square
of the distance. The first used waveguides were conductive metal pipes, which can be used to transport
microwaves, mainly. However, dielectric waveguides (particularly optical fibers) provide a way to confine
light. Using them, energy and information loss can be incredibly minimised for communications. It is thanks
to waveguides that almost-instantaneous telecommunications exist. As such a relevant part of this century’s
technology, the study of waveguides is of utmost importance.

Nevertheless, many real-world scenarios are too complicated to obtain an exact analytical solution to de-
scribe them. Scientific computing has been helpful against this deterrent to the physical sciences. Compared
to humans, computers have a far greater processing speed and capacity to find numerical approximations to
problems without exact analytical solutions. Concerning waveguides, the propagation of electric and mag-
netic fields through space would require a massive amount of calculations to predict how light would behave
inside an optical fiber. Luckily, some numerical methods can be used to predict these scenarios.

In this report, the Finite Di↵erence Time-Domain (FDTD) method will be used to simulate an optical
fiber. Fourier theory will be used to perform a mode analysis of a straight optical fiber, decomposing the
frequencies and analysing the dispersion relationships for every mode inside the fiber. Finally, the simulation
will show the fiber performing a 90-degree right turn. A relationship for the intensity loss as a function of
the curvature radius will be obtained.

2 Theoretical framework

2.1 Finite Di↵erence Time Domain technique and implementation

2.1.1 General information

Historically, predictions for EM waves have been made through experiments or theoretical understanding.
Computational predictions have been made possible in the last years through the use of numerical methods.
FDTD is one of the most used numerical methods for EM waves, as it can be easily applied to a wide range
of situations.

The advantages of FDTD are countless. To begin with, it can simulate arbitrary geometries and predict
how light will interact with them, which is not an easy task without FDTD. It works with a wide range
of frequencies and can simulate stimuli such as RADAR, LASER, High Power Microwaves, . . . . Also, its
accuracy can be set as high as required just by using a large enough number of spatial and temporal steps.
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Drawbacks of FDTD include its computational cost. It is not exceeding, but a large number of cells or a
large number of time steps will result in a slower software. Thus, only small physical systems will be studied.

2.1.2 Mathematical development

FDTD is based on Faraday’s law and Ampere-Maxwell Law in their derivative form. Through central finite
di↵erences (which have a lower error than forward and backward di↵erences), the derivatives in Maxwell’s
equations are approximated as subtractions. The central di↵erence has the following expression
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As the wave equation has second derivatives, an expression for the second-order derivative of a function
f(x) needs to be obtained:
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Applying backward and forward di↵erences respectively, a final expression for solving di↵erential equa-
tions can be obtained:
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This equation suggests that when applying this approximation to a derivative that di↵erentiates with
respect to a variable ↵, then ↵ should be discretised. The software built is a 2-D simulation, so we’ll work
with the wave equation for 2-D where c is the wave speed.
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As there are second derivatives with respect to three coordinates, 2-D space and time will be discretised, and
the notation f(xi, yj , tn) ⌘ f

n(i, j) will be adopted. Now the second-order derivative approximation from
Equation 3 can be applied to Equation 4:
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and an update equation has been obtained. This allows the value for the next discretised time step (immediate
future) to be found in terms of present and past values. Also, notice only nearest neighbours are used for
the calculations of each cell, making the FDTD technique not so computationally expensive.

Now, an update wave equation like Equation 6 can be obtained specifically for EM waves. Consider
Maxwell equations for isotropic, linear, nondispersive material without sources. Faraday and Ampere-
Maxwell laws in terms of electric field E and magnetic field H [Gri�ths, 1999, p.321]:
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Applying the curl to both sides of both Equations 7, using the identity r⇥r⇥F ⌘ �r2F+r (r · F), and
taking into account that the other Maxwell equations when there are no sources state thatr ·E = r ·H = 0:
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These are uncoupled, second-order wave equations, i.e., they take the form of Equation 4 where the wave

speed is
1
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, where c is the speed of light c = (µ0✏0)
�1/2. As they are vector equations, we can

extract an equation for each component. For this 2-D software, we assume that the fields only vary along
two dimensions ( @

@z = 0). These two vector equations give 6 equations, and we can separate them into two
self-consistent sets of solutions, which are two di↵erent polarisations. The z-component of the first equation,
and the x- and y- components of the second equation in Equations 8, are a set of independent equations
showing Ex, Ey, andHz: 8
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It can be seen that Equations 9 refer to the modes where the H-field is parallel to the z-direction and the
E-field is contained within the xy-plane. Hence, these are the TEz modes, i.e. modes with the E-field
transverse to the z-direction (note that the simulated 2-D waveguide will be parallel to the xy-plane, so
that they will be referred to as TM modes later, where the magnetic field is perpendicular to the direction
of propagation). Note that for these modes, Hz carries all the information, as it determines the two other
components Ex and Ey. Had the other TMz modes been chosen, then Ez would carry all the information.

Now apply central di↵erences for the spatial derivatives, and forward di↵erences for time derivatives.
This has been chosen so that the future values of Ex, Ey, and Hz can be obtained in terms of the present
values. Equations 9 now look like the following:
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from which, solving for the future values, the update equations for the software have been obtained. For the
software, �x = �y ⌘ �s:
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2.1.3 Yee cells

In 1966, Kane Yee published ”Numerical solution of initial boundary value problems involving maxwell’s
equations in isotropic media”, where he proposed an idea that gave FDTD an opportunity to flourish and
be much more useful. He proposed staggering the spatial and time components in such a way that the set of
finite di↵erence equations 11 are easily applicable [Yee, 1966]. In subsection 2.1.4, the specific choice for said
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staggering will be described, but the basic idea is placing Ex, Ey, and Hz in an orientation that allows the
derivatives to be approximated as central di↵erences. This is an improvement, as central di↵erences have a
lower error than forward/backward di↵erences, which were also used in Equations 11, so these are not the
final version of the update equations yet.

2.1.4 Software implementation

Creation of the animation explain x,y, indexing, pyplot pcolormesh and what it needs

Numerical stability The condition for stability is that the EM field varies slightly between adjacent cells,
without significantly large changes. As such, a grid length �s ⇠ � would not satisfy this criterion. A variable
called S in the software was given a value of 10, making sure that the grid length �s is at least 10 times
smaller than the shortest wavelength of the simulation.

The stability criterion is given by [Yee, 1966]:
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As long as Equation 13 is true, the stability condition is met. Accordingly, �t was set to be �t = N
�s
c0 ,

where N <
p
2. A safe upper-bound limit for N was 1p

2
⇡ 0.7, and it was finally set to 1/3 (note 1/3 <

p
2).

Yee cells & array implementation As explained, Yee came up with an idea that allowed easier and
better calculations of the EM fields. The main idea is to allow for central di↵erences with respect to both
space and time.

Here I will describe the specific choice for said staggering that was implemented into the software. In
order to allow for all derivatives to be central, notice how in Equations 11, the next value of Ex in time
depends on its nearest Hz neighbours in the y-direction. Similarly, the next Ey value depends on its nearest
Hz neighbours in the x-direction. However, Hz values depend on the nearest Ex neighbours in the y-direction
and the nearest Ey neighbours in the x-direction. Hence, the distribution in Figure 1 was adopted.

x

y

Figure 1: Suitable distribution for EM fields staggering (Red: Ey; Green: Ex; Blue: Hz)

Tracing back to Equations 11, the central di↵erences that were applied to spatial derivatives can be easily
calculated now.
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This spatial staggering is surely helpful, however achieving update equations through central time di↵er-
ences too would be ideal. Yee proposed discretising time so that Ex and Ey time values coincide, and Hz

is calculated for in-between time steps. Thus, what before was H
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Considering everything, the final update equations look like this:
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Notice that some indices have changed, but due to the specific staggering, all of the di↵erences are central,
minimising error and allowing for easy calculations.

Array implementation The array indices have to be chosen carefully so that Yee cells actually work.
This poses a computational problem as the values for the EM fields need to be stored in arrays, and there
are no half-indices in arrays. Thus, Yee cells will be created. These would be 3-D cells (in x, y, and time)
for our 2-D software.

As the software was created in Python, the EM field values were stored in Numpy arrays, so that the
y-indices go from 0 (top row) to the maximum value (bottom row), and the x-indices go from 0 (left column)
to the maximum value (right column). Therefore, the Yee cell with indices (i,j) at time step n covers tn and

tn� 1
2
, and includes En

x (i +
1
2 , j), E

n
y (i, j � 1

2 ), and H
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2
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2 , j �
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2 ). All the indices for the Yee cells are

integers, so now the staggering shown in Figure 1 is ready to be implemented.
The code for the update equations 14 would then be:

• Hz nplus1[1:ny-1,1:nx-1] = Hz n[1:ny-1,1:nx-1] + (dt / (mu*ds))*((Ex n[0:ny-2,1:nx-1] - Ex n[1:ny-
1,1:nx-1]) - (Ey n[1:ny-1,2:nx] - Ey n[1:ny-1,1:nx-1]))]

• Ex nplus1[1:ny-1,1:nx-1] = Ex n[1:ny-1,1:nx-1] + (dt / (eps*ds))*(Hz nplus1[1:ny-1,1:nx-1] - Hz nplus1[2:ny,1:nx-
1])

• Ey nplus1[1:ny-1,1:nx-1] = Ey n[1:ny-1,1:nx-1] - (dt / (eps*ds))*(Hz nplus1[1:ny-1,1:nx-1] - Hz nplus1[1:ny-
1,0:nx-2])

Absorbing boundary conditions

2.2 Total Internal Reflection

2.2.1 Critical angle

Total Internal Reflection (TIR) is a phenomenon occurring when light incident on a less dense medium reaches
the interface at a certain angle. The minimum angle at which light is fully reflected, i.e., the minimum angle
for TIR is called the critical angle and can be calculated using Snell’s law like
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· sin ✓t
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◆
(15)

where nt and ni are the refractive indices of the transmitted and incident materials respectively, and ✓t is

the transmitted angle, ✓t =
⇡

2
for TIR.
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2.2.2 Energy transmission

Before studying waveguides, the software will be checked. The justification for testing the software through
TIR comes from its significance in waveguides. Without TIR, not even light incident at large angles would
totally reflect, resulting in a constant loss of field amplitudes, and hence in a loss of the information being
transmitted.

To test the simulator, the ratio of transmitted energy to incident energy is calculated for a plane wave
crossing an interface between two materials. The plane wave comes from an excitation of Hz and Ey for all
the points in a vertical line. The excitation applied has the shape of a Gaussian derivative in time:

Figure 2: Excitation for a vertical plane wave pulse

For that purpose, the flux of the Poynting vector
⇣
~S = ~E ⇥ ~H

⌘
is calculated over two surfaces, one before

the interface (S1) and another one after the interface (S2), giving the power across the surfaces. These values
are then added for each time iteration, giving the total energy crossing each surface.

Both surfaces are taken in the y-z plane, so that they look as vertical lines in the x-y plane for the 2-D
simulation. The di↵erential surface term for the flux integrals is then given by:
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Therefore, only the x-component of the Poynting vector contributes, and it is given by Sx = EyHz �
EzHy = EyHz, because Ez and Hy are both 0 in the simulation (only TM modes are considered). Then,
by adding Ey ·Hz for every spatial point and every time iteration at each of both surfaces, the ratio can be
obtained:

Etransmitted

Eincident
=

R ⇣RR
S1

~S ~dA

⌘
dt

R ⇣RR
S2

~S ~dA

⌘
dt

=

R �RR
S1 EyHzdydz

�
dtR �RR

S2 EyHzdydz
�
dt

⇡
P

n

P
j E

n
y (i1, j)Hn

z (i1, j) dy
P

n

P
j E

n
y (i2, j)Hn

z (i2, j) dy
(17)

where in the last step an arbitrary length for the z-dimension of the surfaces has been assumed to be 1, and
the integrals with respect to y and t have been approximated by a sum.

2.3 Waveguides

The choice of material for optical fibers, in general for dielectric waveguides, totally determines whether light
will be confined or not, the number of excited modes, . . . It determines all aspects of how the wave will be
guided.

Usually, optical fibers consist of a core through which light is guided, and a cladding material sur-
rounding the core. A common core material is silica, usually doped with some material. For this sim-
ulation, germanium dioxide (GeO2) will be taken as the core, having a refractive index of ncore = 1.55
[Clayton and Simpson, 1987, p.1187-1188].
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The cladding helps confining the light within the core, protects the core from external damage, and
reduces the signal’s distortion. The most used material as cladding is pure silica (SiO2), with a refractive
index of ncladding = 1.45 [Ghatak and Thyagarajan, 1997]. Fluorinated Ethylene Propylene (FEP) is a
relatively new cladding material with some advantages with respect to pure silica. It has a very low thermal
expansion coe�cient, and a refractive index of ncladding = 1.34 [Wei et al., 2017, p.11348-11354]. Its lower
refractive index makes it easier for the optical fiber to confine light. This will be the material used as cladding
in the simulation.

As specified in Section 2.1.2, the FDTD method is applied to a two-dimensional scenario in this report.
Therefore, the waveguides simulated will behave as infinite slab waveguides. These consist of a planar slab
(core) with a higher refractive index than the surrounding cladding to allow for TIR, and have infinite width
in one dimension, perpendicular to the propagation direction of light [Marcuse, 1989].

x

z

y

Figure 3: Slab waveguide, where the z-direction would be infinite in the simulation [Okamoto, 2022, p.14]

The optical fiber analysis in this report has two di↵erent sections. First, a mode analysis will be performed
on a straight slab optical fiber using Fourier theory. Then, a 90� turn of the optical fiber will be simulated,
and the energy lost as a function of radius will be found, as well as another mode analysis to find out whether
some modes are lost in the way. energy lost as a function of radius, mode analysis as a function of radius

2.3.1 Frequency decomposition, mode analysis

Signals are characterised by the range of frequencies over which the signal carries the energy, i.e. the
information. The di↵erence between the highest and lowest frequencies contained in the signal is called its
bandwidth, and is a measure of the spectral contents of the signal. The frequencies contained within the
signal are obtained through a one-dimensional Fourier transform (FFT) of the field in the time domain,
according to Fourier analysis.

The one-dimensional FFT can be applied to the field in the spatial domain of the axis of the optical
fiber instead of the time domain. This yields the reciprocal space composition of the propagating pulse, i.e.
the wavenumber component in the direction of the optical fiber’s axis for each mode. These modes feel a
di↵erent e↵ective refractive index neff which can be calculated. The theoretical results will be compared
with the experimental ones in the FDTD simulator.

First, an expression for the height h of the optical fiber’s core in terms of the number of modes wanted
will be obtained. This way, the software can be set to simulate an optical fiber depending on the input
number of modes desired.

Note |~k| = k0 · ncore =
!0

c0
· ncore, where k0 is the wavenumber assigned to the central frequency of the

pulse in vacuum and c0 is the light speed in vacuum.
Now, each mode has light rays at discrete values of the angle of incidence ✓i with respect to the normal

to the interface between core and cladding. The specific angle of incidence of a mode m, ✓i,m determines its
propagation constants along x and y. Figure 4 shows they are, respectively:
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� = kx = |~k| sin ✓i = k0ncore sin ✓i

 = ky = |~k| cos ✓i = k0ncore cos ✓i

(18)

According to the independent set of equations 9, the H-field will be in the z direction, perpendicular
to the direction of propagation in the xy-plane. Consequently, we will be dealing with TM modes. Taking

7

Zobold

maybeleave
some space
in here

ADVANTAGES OF SINGLE DOUBLE MODE
PROPACAT

aspect the ypunatisFft whyuseit

kinZit'sdifferentforeachmodebecauseeachmodetravelswithdig
direction't'd

Ofage

jy
N



ncladding

ncladding

~km
ncore

✓i,m✓i,m

kx

ky

h

Figure 4: Profile of optical fiber

the reflection Fresnel coe�cient for TM modes, the following expression for the phase shift can be obtained
[Born and Wolf, 2013, p.36-41]:
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Due to the finite length of the fiber in the y-direction, the allowed values of ky are quantised. This is
because only some of the values satisfy the given boundary conditions [Keiser, 2011, p.35-60]. Looking at
the propagating mode in Figure 4, notice that the positive y-component of the first ray is equal and opposite
to the negative y-component of the totally internally reflected second ray. This overlap forms what is known
as a standing wave [Okamoto, 2022]. This vertical standing wave has undergone a certain phase shift known
as Goos-Hänchen shift [Hecht, 2017]. Because the mode exists, the interference has to be constructive:

2hky + 2� = 2m⇡ (20)

where m is any integer. Because the phase shift is small, the following simplification can be done:

ky =
2m⇡ � 2�

2h
⇡ 2m⇡

2h
=

m⇡

h
(21)

So ky / m, and Equation 35 shows that ky / cos ✓i. Now, ✓i = ✓c is the minimum angle of incidence of any
existing, confined mode. Therefore, when ✓i is minimum at ✓c, m = mmax is maximum.

So using Equations 15, 35, 21, and some trigonometric identities:

h =
�0mmax

2
q
n2
core � n

2
cladding

(22)

which is the Equation that will be used to obtain the necessary core height h depending on the number
of modes wanted. This height will be used in the simulator to compare the FFT results with the theory.

Now that the height h can be set to allow a certain number of modes, a theoretical expression for the
e↵ective refractive index neff,m of a mode m is needed to compare with the results of the Fourier analysis
of the FDTD. These can be calculated simplifying Equation 20 and using the expression for � given by
Equation 19:
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Because m appears inside a tangent as (�m⇡
2 ), there will only be two di↵erent results, depending on whether

it is even or odd. This equation will be the one used to calculate the theoretical values of ✓i for each mode.
The total number of propagating modes should be equal to the total number of solutions both when m is
odd and even.
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However, Equation 23 can only be solved for ✓i numerically. Brent’s method [REFERENCE] will be
used to calculate the roots of:

f(✓i) =
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ncladding
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cos ✓
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2
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SciPy’s built-in function ”scipy.optimize.brentq(f, a, b)” [Scipy community, 2021] will be used to find the
roots for Equation 24.

Finally, looking at Figure 4, the component of the wavevector in the direction of the waveguide’s axis
(the one returned by the FFT) is kx = k0 · ncore · sin ✓i. The e↵ective refractive index of a mode can be
calculated through:

kx = k0 · neff (25)

where k0 is the wavenumber of the pulse in vacuum. Thus,

neff,m =
kx

k0
= ncore · sin ✓i,m (26)

Given that the FFT returns kx, then neff can be calculated both through Fourier analysis and using Equation
23 to obtain the angle of incidence.

2.3.2 FFT2

FFT2: small temporal bandwidth so that there are many !s ”Fast Fourier Transform in Two Dimensions”
in-plane dispersion of a waveguide is important for signal processing and communications. Can optimise

its design to minimise loss, high bandwidth
FFT2 of B-field profiles along waveguide in both space and time.

3 Total Internal Reflection

In this section, an analysis of the critical angle for di↵erent interfaces will be performed.

3.1 Software implementation

The setup consists of a vertical plane wave (propagating horizontally in the x-direction) incident in a diagonal
interface, where the angle of incidence is the input determining the tilting of the interface.

To simulate the plane wave, the Hz and Ey fields of a vertical line (constant x-value) are excited with
the shape of a Gaussian derivative in time (Figure 2). The relative permeability and permittivity are set
as arrays. Because of the computational di�culty of simulating a tilted plane wave, the interface has to be
tilted. It is modelled with the equation of a straight line of slope m calculated through m = 1

tan(✓i)
, where

✓i is the desired angle of incidence with respect to the normal. All the spatial grid points to the right of
said line are assigned the value of the permittivity and permeability of the second (transmitted) material.
Similarly, all the grid points to the left of the interface are assigned the properties of the first (incident)
material.

Some computational problems are encountered regarding the TIR. The plane wave is created as an infinite
plane wave. The top and bottom ends of the plane wave do not di↵ract thanks to the fact that the software
does not process the propagation of any wave outside of the boundaries, so it acts as if it was a perfect
infinite plane wave. However, the plane wave is transmitted at the triple boundary between both materials
and the bottom boundary of the simulation, and it is not supposed to refract at any point for ✓i � ✓c. It
can be inferred that some intensity is ”leaked” at that point and propagates through the second material.
A screenshot of the animation shows the residual intensity being refracted into the second material.

The critical angle for the interface in Figure 5 can be calculated using Equation 15, ✓c = arcsin

✓
nt

ni

◆
=

arcsin (1.34/1.55) = 60.00�.
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Figure 5: Infinite plane wave with an incidence of 35� (left) and 60� (right) from a material with ni = 1.55
to a material of nt = 1.34

Figure 5 shows that TIR is in fact working. The left image shows an incidence below the critical angle,
and in the region near to the interface the refracted plane wave can be seen in the second material, where
it later curves due to the ”leaked” intensity from the bottom. The image on the right is supposed to show
TIR. Now there is nothing resembling a plane wave in the transmitted region. The light at the other side of
the interface looks as if it is propagating from the bottom corner, it doesn’t look like a refracted plane wave.

Hence, the problem was a computational one, the physics were working. The next step was to restrict
the plane wave vertically, so that light was not transmitted in said triple boundary. If the plane wave doesn’t
reach that point, the finite plane wave should be fully reflected. This only poses one problem, and it is
the fact that, as the new plane wave does not behave as a perfect infinite one, the top and bottom points
di↵ract a bit. This di↵raction means that some light will be incident at angles smaller than the critical angle.
The animation was then made larger to create a greater plane wave but still vertically finite, to reduce said
di↵raction. As expected, the top and bottom points refracted some light into the second material due to the
curvature of the wave at those points and their lower angles of incidence. However, most of the wave is now
perfectly reflected, as shown in Figure 6.

Figure 6: Finite plane wave with an incidence of 35� (left) and 60� (right) from a material with ni = 1.55
to a material of nt = 1.34

Similar to Figure 5, the left image of Figure 6 shows a transmitted plane wave after the interface while
the right image shows TIR with the leaked intensity propagating in all directions. This is the setup used to
measure the relative transmitted energy as a function of the angle of incidence.

3.2 Results

For the interface in Figure 7 the theoretical value of the critical angle is ✓c = 60.00�, and it is the critical
angle that will be used when simulating the optical fibers. According to Section 2.3, ncore = n1 = 1.55 and
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Figure 7: Relative transmitted energy; ✓c = 60.00� (blue: theoretical; red: experimental)

ncladding = n2 = 1.34. The intensity drops to almost 0 after showing an inflection point at the critical angle,
although there is some intensity leaked due to the finite plane wave. There is a 5.30% of transmitted energy
at ✓i = 70�, and a 0.80% at ✓i = 85�.

Hence, the transmitted residual energy has been shown to come from the di↵racted ends of the wave,
and so the software can be used to study waveguides: TIR works for angles of incidence greater than the
critical angle.

4 Waveguides

bent waveguides: energy lost as a function of radius, mode analysis as a function of radius

4.1 Software implementation

The simulation was created so that the user has the following inputs:

• The central frequency !0

• The frequency bandwidth �!

• Refractive index of the core ncore

• Refractive index of the cladding ncladding

The propagating pulse consists of an oscillating Gaussian excitation (Figure 8), defined by [Maclaurin, 1990,
p.3275-3279]:

f(t) = cos(!0t) · exp

� (t� t0)2

2�2
t

�
(27)

where �t and t0 are calculated from the user inputs as ��1
! and 5�t, respectively.

For the first part of this analysis where straight optical fibers will be simulated, the size of the simulation
in the y-direction is reduced due to the simulated waveguide being parallel to the x-axis, so the extra space in
the y-direction is not needed. This results in some reflection at the top and bottom limits of the simulation,
due to the absorbing boundary conditions being an approximation.

As the waveguide in this part of the experiment is a straight one with its axis in the x-direction, the FFT
of the field in the x-domain yields the component kx shown in Figure 4.

Finally, because of the reduction in the y-direction size of the animation and the additional reflections
that it creates, metallic walls were simulated to contain the radiation that leaves the waveguide because of
its small angle of incidence. These walls block this noisy radiation from the excitation point and range from
the outside of the core to the end of the simulation (Figure 9).
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Figure 8: Excitation for an oscillating Gaussian pulse

4.1.1 Bent waveguides

In order to simulate the core of the waveguide performing a 90� turn, Boolean indexing was used. Boolean
indexing allows the creation of Numpy masks, which in turn allow the software designer to modify the values
of an array depending on a logical condition.

The arrays x and y are 2-D Numpy arrays storing the physical values, in meters, for the x-
and y-positions respectively.

The 90� turn is a quarter of a circumference. Therefore, the bent waveguide can be parametrised as
all the points within two concentric quarters of circumference, as IMAGE CHATGPT LATEX BENT
PART OF THE WAVEGUIDE.

A Numpy mask can be created then that marks all points within the shaded area in Image JAJAJ as
True, allowing the developer to modify only those values of the relative permittivity and permeability arrays.
This results in e↵ectively simulating a di↵erent material.

If this parametrisation is specified in terms of the desired physical radius of the quarter of circumference,
then a waveguide where light propagates in the positive x-direction can be simulated performing a 90� turn
so that light then propagates in the negative y-direction, as shown in Figure OTRA CON UN DIBUJO
DE LA WAVEGUIDE O LA MISMA PERO ENTONCES LA DE ANTES INCLUYENDO
LAS PARTES RECTAS Y NO SOLO LA CIRCUMFERENCIA.

4.2 Mode analysis

As mentioned in Section 2.3, the slab optical fiber simulated has a core of GeO2 (ncore = 1.55) and a FEP
cladding (ncore = 1.34). These fibers are usually used for mid-infrarred (MIR) transmission, that has an
associated central wavelength of 2 � 6 µm [Henderson et al., 2006]. �core = 3.00 µm will be chosen. Using
the conversion between wavelength and frequency, the necessary input central frequency can be determined:

!0 =
2⇡c

�0
=

2⇡c

ncore�core
= 4.05⇥ 1014 rad · s�1 (28)

where �0 is the vacuum wavelength. In order for the FFT to yield a wavelength distribution with a high
resolution, the frequency bandwidth will be set as 40 times smaller than the central frequency:

�! = 0.1⇥ 1014 rad · s�1 (29)

Therefore,

|kcore| =
2⇡

�core
⇡ 2.09⇥ 106 rad ·m�1 (30)
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4.2.1 Single-mode optical fiber

First, a single-mode optical fiber (mmax = 1) will be simulated with the values shown in Equations 28, 29,
30. Using Equation 22,

h =
�corencoremmax

2
q
n2
core � n

2
cladding

= 3.00 µm (31)

Solving Equation 23 with Brent’s method, a single solution of ✓i = 71.26� is obtained, so there is only
one mode expected. This angle of incidence of the fundamental mode yields an expected value for kx of:

kx = |kcore| sin ✓i = 1.98⇥ 106 rad ·m�1 (32)

which gives
ne↵ = 1.47 (33)

After applying the FFT to the field in the x-direction, the following results are obtained.

Figure 9: Screenshot of the pulse propagating through the described single-mode horizontal optical fiber
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Figure 10: Hz value as a function of x in the fiber (left) and its FFT re-scaled to show the e↵ective refractive
index, with a red line for the theoretical value (right)

Because of the reduction of the simulation in the y-direction, some residual reflections enter the optical
fiber, but the metallic walls drawn in red in Figure 9 keep most this radiation to their left. However, some
noise still re-enters the fiber and slightly modify the shape of Figure 10 (left) at small values of x. Still, the
resolution of the peaks is high in the right plot, yielding only one main mode as expected, with a value of
kx = 1.97⇥ 106 rad ·m�1 rounded to 3 significant figures.

The achieved result through the FDTD method gives ne↵ = 1.46, which agrees with the theoretical
value within a 0.68% error, which is really good.

4.2.2 2-mode optical fiber

For this sub-section, two modes will try to be obtained.
In order to simulate an optical fiber with two propagating modes, mmax = 2. The values shown in

Equations 28, 29, 30, and Equation 22 allows the calculation of h:

h =
�corencoremmax

2
q
n2
core � n

2
cladding

= 5.97 µm (34)

Using Brent’s method again to find the solution of Equation 23, two solutions are obtained (one for m = 0
and the other one for m = 1): 8

<

:

✓i,m=0 = 78.48�

✓i,m=1 = 67.44�
(35)

This angles of incidence of both theoretical modes yield an expected value for kx of:
8
>><

>>:

kx,m=0 = |kcore| sin ✓i,1 = 2.05⇥ 106 rad ·m�1

kx,m=1 = |kcore| sin ✓i,2 = 1.93⇥ 106 rad ·m�1 (36)

and e↵ective refractive indices of
8
<

:

ne↵ ,m=0 = |kcore| sin ✓i,1 = 1.52

ne↵ ,m=1 = |kcore| sin ✓i,2 = 1.43
(37)
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Figure 11: Screenshot of the pulse propagating through the described 2-mode horizontal optical fiber

Figure 12: Hz value as a function of x in the fiber (left) and its FFT re-scaled to show the e↵ective refractive
index felt by each mode, with a red line for the theoretical values (right)

After applying the FFT to the field in the x-direction, the following results are obtained:
The resolution of the peaks is high for 2 modes, too, yielding two main modes as expected, with a value

of kx: 8
>><

>>:

kx,m=0 = |kcore| sin ✓i,m=0 = 2.05⇥ 106 rad ·m�1

kx,m=1 = |kcore| sin ✓i,m=1 = 1.84⇥ 106 rad ·m�1 (38)

and e↵ective refractive indices of
8
<

:

ne↵ ,m=0 = |kcore| sin ✓i,m=0 = 1.52

ne↵ ,m=1 = |kcore| sin ✓i,m=1 = 1.36
(39)

The achieved result through the FDTD method agrees with the theoretical values within a 0.13% error
for the mode with m = 0, and within a 4.90% error for the mode with m = 1, which is really good.

4.3 Dispersion analysis

tell me inputs (w0, sigmaw)
First single mode, mmax = 1, tell me h, and all solutions of eq 24 for m=0 and m=1. Does it match?
Then 2 modes, and 3 modes. Find necessary mmax
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4.4 Bent waveguides

4.4.1 Single-mode bent fiber

Results for same parameters as in section REFERENCE SECTION 4.2.1 SINGLE-MODE OPTI-
CAL FIBER with the 90� turn, measuring the integral of the Poynting vector across many time iterations
to measure the energy propagating through the first, horizontal section, vs the second, vertical section, to
see relative propagating intensity after the turn in terms of the radius of curvature.

Also, FFT will be performed again but now in the vertical section to see if modes are maintained and
when their Fourier amplitude goes below a certain threshold.

5 Conclusion

A more general, greater in size analysis could be performed with a supercomputer
2D simulation, not bad, but not real. Not infinite slab waveguides in practice. This could be generalised

to 3D (rectangular waveguides).
Cladding everywhere, good approximation but not realistic.
Attempts could be made to found better, more accurate absorbing boundary conditions.
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